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Abstract. We introduce a new approximation scheme for the periodic Anderson model (PAM).
The modified alloy approximation represents an optimum alloy approximation for the strong-
coupling limit, which can be solved within the coherent-potential-approximation formalism. Zero-
temperature and finite-temperature phase diagrams are presented for the PAM in the intermediate-
valence regime. The diversity of magnetic properties accessible by variation of the system
parameters can be studied by means of quasiparticle densities of states: the conduction band
couples either ferromagnetically or antiferromagnetically to the f levels. A finite hybridization
is a necessary precondition for ferromagnetism. However, too strong a hybridization generally
suppresses ferromagnetism, but can for certain system parameters also lead to a semi-metallic state
with unusual magnetic properties. By comparing with the spectral density approximation, the
influence of quasiparticle damping can be examined.

1. Introduction

Correlated electron systems have come to occupy centre stage in both theory and experiment in
condensed matter physics. There is a general consensus that strong electron correlations play a
decisive role in a variety of phenomena such as magnetism, heavy fermions, high-temperature
superconductivity, and colossal magnetoresistance. Real systems that display these phenomena
include transition metals (3d), alloys and compounds, as well as rare-earth (4f ) systems (metals,
insulators), in particular cuprates, manganites, and Ce compounds. There is intense activity
both theoretically and experimentally focused on isolating the essential interactions responsible
for these phenomena. In this process, several model systems are being studied which are
expected to at least qualitatively mimic the actual systems in some region of the parameter
space. One of the most widely used models which brings out the role of electron correlations
while also taking into account the interplay of two different types of electron, one highly
localized and the other quasifree, is the well-known Anderson model [1]. One distinguishes the
‘single-impurity Anderson model’ (SIAM), if the system of uncorrelated conduction electrons
hybridizes with a single localized state, and the ‘periodic Anderson model’ (PAM), if the
hybridization takes place with a periodic lattice of localized states. For the SIAM, many exact
results have been obtained, e.g. by using Bethe-ansatz [2] or renormalization group theory [3].
Very recently the SIAM has gained new impetus in connection with the ‘dynamical mean-
field theory’ [4–6] which exploits the fact that in infinite lattice dimensions theoretical lattice
models like the Hubbard model can be mapped onto single-impurity models such as the SIAM.
Numerically essentially exact methods such as the exact diagonalization of small systems,
quantum Monte Carlo calculations, and numerical renormalization group theory [6, 7] have
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provided further insight into the physics of the model. However, since these numerical methods
are restricted by certain limitations, reliable analytical approaches remain to be established [8].

The situation is less satisfactory in the case of the PAM. Even though there exist a number
of approximate schemes for different parameter constellations, referring to the so-called heavy-
fermion, intermediate-valence, and Kondo regimes, there is still a need for further improvement
and extension. This need has acquired additional urgency in view of the fact that for the
parameter space corresponding to strongly correlated low-lying localized states, the PAM can
be mapped [9] onto the Kondo-lattice model [10] which is of great current interest, e.g. with
reference to the extraordinary physical properties of the manganites [11].

Recently we proposed a new approximation scheme [12] which is based on a mapping
of the PAM onto an effective Hubbard model. The parameters of the Hubbard model are
such that they correspond to the strong-coupling limit. Therefore we could exploit a reliable
approximate theory, valid in the strong-coupling limit. One such theory is the ‘spectral density
approach’ (SDA) [13–15]. Its main advantages are the physically simple concept and the
non-perturbative character. In this scheme we have studied the magnetic T = 0 phase diagram
of the PAM as well as its finite-temperature magnetic properties. The SDA, however, exhibits
a major limitation concerning quasiparticle damping. By ansatz, the SDA self-energy is a
real quantity, thus neglecting from the very outset effects due to the finite lifetimes of the
quasiparticles. How quasiparticle damping influences the magnetic stability in the PAM is an
interesting and important question, which was been left open by our previous theory [12]. It
is the main aim of the present study to close this gap.

One conceptually simple method that is able to provide complex self-energies is the ‘co-
herent potential approximation’ (CPA) [16]. In order to apply the CPA to the PAM, we have
to construct an alloy analogy. This requires the determination of the energy levels and the
concentrations of the components of the fictitious alloy. Within the conventional alloy analogy
(AA) treatment due to Hubbard [17], these are obtained by referring to the atomic limit. For
an application to the PAM, see e.g. [18, 19]. However, this choice is by no means predeter-
mined. On the contrary, it can be shown that it is in fact not the best ansatz. It is known
that the CPA becomes an exact procedure for infinite lattice dimensions (d = ∞), where the
inherent single-site aspect of the CPA is rigorous [20]. However, the CPA solution of the AA
for the d = ∞ Hubbard model violates the exactly known strong-coupling-behaviour require-
ment [21] and also does not reproduce the weak-coupling results of second-order perturbation
theory [22,23]. Furthermore, it contradicts exact high-energy expansions [24]. So we have to
conclude that the conventional AA, which starts from the atomic limit solution, is not the most
convenient alloy analogy. In this paper we therefore derive a ‘modified alloy analogy’ (MAA),
which was recently introduced for the Hubbard model [24, 25], for the PAM. This method
substantially improves on the AA ansatz by deriving an appropriate alloy analogy from exact
high-energy expansions of the single-electron Green function and the self-energy. This pro-
cedure guarantees the correct strong-coupling behaviour relevant for the PAM. On the way to
deriving the MAA, the above-mentioned SDA can easily be re-derived without the necessity of
introducing the effective Hubbard model as was done before [12]. It turns out that the ‘atomic
levels’ of the fictitious alloy constituents are nothing but the SDA quasiparticle energies in the
zero-bandwidth limit. Similarly the ‘concentrations’ agree with the SDA spectral weights in
this limit. The MAA thus promises to retain the advantages of the SDA while simultaneously
improving the method by incorporating quasiparticle damping. The SDA energies and spectral
weights contain non-trivial thermodynamic expectation values which have to be determined
self-consistently. Through them, the itineracy of the −σ -electrons, which define the fictitious
alloy for the propagating σ -electrons, comes into play, at least to a certain degree. The neglect
of this itineracy is a well-known shortcoming of the conventional AA.
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The paper is organized as follows. In the next section the PAM and its many-body problem
are formulated. An approximate solution by use of the MAA scheme is then developed in
section 3. Section 4 is devoted to a presentation and discussion of the results concerning the
magnetic properties of the PAM. The paper ends with some concluding remarks.

2. The model Hamiltonian and its many-body problem

The starting point is the periodic Anderson Hamiltonian

H =
∑
ijσ

(Tij − µ)s
†
iσ sjσ +

∑
iσ

(ef − µ)f
†
iσ fiσ + V

∑
iσ

(f
†
iσ siσ + s†

iσ fiσ ) +
1

2
U

∑
iσ

n
(f)
iσ n

(f)
i−σ .

(1)

siσ (fiσ ) and s†
iσ (f †

iσ ) are, respectively, the annihilation and the creation operators for an
electron in a non-degenerate conduction band (localized f state), and

n
(f)
iσ = f

†
iσ fiσ (2)

is the spin-dependent occupation number operator for the f state. The index i refers to the
respective lattice site; σ = {↑,↓} is the spin projection. The hopping integral Tij :

Tij = 1

N

∑
k

e−ik·(Ri−Rj )ε(k) (3)

describes the propagation of a band electron from site Rj to site Ri . ε(k) is the free Bloch
energy, while ef denotes the position of the non-degenerate f level. We choose the energy zero
to coincide with the centre of gravity of the unperturbed conduction band:

Tii = 1

N

∑
k

ε(k)
!= 0. (4)

U is the intra-atomic Coulomb repulsion between f electrons. The hybridization V is taken as
a real and k-independent local matrix element; µ is the chemical potential.

Let us start with the retarded single-s-electron and single-f-electron Zubarev Green’s
functions:

G
(f)
ijσ (E) = 〈〈fiσ ; f †

jσ 〉〉 G
(s)
ijσ (E) = 〈〈siσ ; s†

jσ 〉〉 (5)

G
(f,s)
kσ = 1

N

∑
k

eik·(Ri−Rj )G
(f,s)
ijσ (E). (6)

The equations of motion are easily derived and formally solved:

G
(s)
kσ (E) = h̄

E − (ef − µ)−�kσ (E)

(E − (ef − µ)−�kσ (E))(E − (ε(k)− µ))− V 2
(7)

G
(f)
kσ (E) = h̄

/(
E − (ef − µ)− V 2

E − (ε(k)− µ)
−�kσ (E)

)
(8)

where the self-energy �kσ (E) has been introduced via

�kσ (E)G
(f)
kσ (E) = U

1

N

∑
p,q

〈〈f †
p−σ fq−σ fp+k−qσ ; f †

kσ 〉〉. (9)
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Obviously the explicit problem is solved as soon as we have found a solution for the self-energy.
The f- and s-quasiparticle densities of states (QDOS) are given by

ρ(s)σ (E) = − 1

πh̄N

∑
k

�G(s)
kσ (E − µ + i0+) (10)

ρ(f)σ (E) = − 1

πh̄N

∑
k

�G(f)
kσ (E − µ + i0+) (11)

and determine the spin-dependent average occupation numbers n(s,f)σ , which we need to
construct the magnetic phase diagram of the PAM:

n(s)σ = 〈s†
iσ siσ 〉 =

∫ +∞

−∞
dE f−(E)ρ(s)σ (E) (12)

n(f)σ = 〈f †
iσ fiσ 〉 =

∫ +∞

−∞
dE f−(E)ρ(f)σ (E). (13)

3. The modified alloy analogy

A standard method for solving many-body problems such as that posed by the PAM Hamil-
tonian (1) is the CPA [16]. As a single-site approximation, the resulting f-electron self-energy
will be local, i.e. k-independent. If we apply this method here, we have to solve the following
equation self-consistently:

0 =
n∑

p=1

xpσ
Epσ −�σ(E)− ef

1 − (1/h̄)G(f)
iiσ (E)(Epρ −�σ(E)− ef)

(14)

G
(f)
iiσ (E) = 1

N

∑
k

G
(f)
kσ (E) �σ (E) = 1

N

∑
k

�kσ (E). (15)

The solution of (14) needs one to fix the alloy analogy, i.e. the ‘atomic levels’ Epσ and the
‘concentrations’ xpσ of the n constituents of the fictitious alloy. Since the dominant features
of the correlated f level in the PAM are the two charge excitations separated by U , the number
of ‘alloyed’ components n is set to two. The conventional alloy analogy (AA) uses the V = 0
limit (‘atomic’ limit) of the PAM to determine Epσ and xpσ [18, 19]:

E
(AA)
1σ = ef x

(AA)
1σ = 1 − n

(f)
−σ

E
(AA)
2σ = ef + U x

(AA)
2σ = n

(f)
−σ .

(16)

The result violates the weak as well as the strong coupling behaviour and, as for the Hubbard
model, prohibits spontaneous magnetism [18, 24, 26, 27]. In particular, the strong-coupling
behaviour appears to be crucial for ferromagnetism. On the other hand, the choice (16) is not
at all predetermined. We propose another way to establish the ‘best alloy analogy’. Correct
strong-coupling behaviour is guaranteed by fulfilment of the high-energy expansion of the
relevant Green functions and self-energies [24]. The decisive ingredients for proper high-
energy expansions are the local spectral moments:

M(n)
σ = 1

N

∑
k

M
(n)
kσ n = 0, 1, 2, . . .

M
(n)
kσ = 1

h̄

∫
dE EnSkσ (E).

(17)

Skσ (E) is the f-electron spectral density:

Skσ (E) = − 1

π
�G(f)

kσ (E + i0+). (18)
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The moments can be calculated independently of the required spectral density:

M
(n)
kσ = 〈[[. . . [fkσ ,H ]−, . . . , H ]−︸ ︷︷ ︸

n−fold commutator

, f
†
kσ ]+〉. (19)

[. . . , . . .]− denotes the commutator and [. . . , . . .]+ denotes the anticommutator. For the Green
function (5) we can write

G
(f)
kσ (E) =

∫ ∞

+
−∞dE′ Skσ (E

′)
E − E′ = h̄

∞∑
n=0

M
(n)
kσ

En+1
. (20)

To solve the CPA equation (14), we only need the local spectral moments, which are found
to be

M(0)
σ = 1

M(1)
σ = ef + Un(f)−σ

M(2)
σ = e2

f + 2efUn
(f)
−σ + U 2n

(f)
−σ + V 2 (21)

M(3)
σ = e3

f + 3e2
fUn

(f)
−σ + U 2ef(2n

(f)
−σ + n(f)

2

−σ ) + U 3n
(f)
−σ +

+ V 2(2ef + 2Un(f)−σ + Tii) + U 2n
(f)
−σ (1 − n

(f)
−σ )B−σ .

From (8) we get the corresponding expansion for the self-energy:

�kσ (E) =
∞∑
n=0

C
(n)
kσ

En
�σ (E) = 1

N

∑
k

�kσ (E) (22)

with the local coefficients

C(0)σ = Un
(f)
−σ

C(1)σ = U 2n
(f)
−σ (1 − n

(f)
−σ )

C(2)σ = U 2n
(f)
−σ (1 − n

(f)
−σ )(B−σ + U(1 − n

(f)
−σ )).

(23)

Surprisingly, the hybridization V does not explicitly appear in the C(n)σ . The contributions via
the moments (21) are exactly cancelled by those from the term V 2/(E − (ε(k)− µ)) in (8).

By use of (20) and (22), we now expand the CPA equation (14) in powers of 1/E.
Comparison of the coefficients of the 1/En terms up to n = 3 yields the following set of
four equations for the four unknown quantities E(1,2)σ and x(1,2)σ :

2∑
p=1

xpσ = 1

2∑
p=1

xpσ (Epσ − ef) = Un
(f)
−σ

2∑
p=1

xpσ (Epσ − ef)
2 = U 2n

(f)
−σ

2∑
p=1

xpσ (Epσ − ef)
3 = U 3n

(f)
−σ + U 2n

(f)
−σ (1 − n

(f)
−σ )(B−σ − ef).

(24)

We now use equations (24) to fix the ‘optimum’ alloy analogy. After simple manipulations we
obtain

E1,2σ = 1

2

[
B−σ + U + ef ±

√
(B−σ + U − ef)2 + 4Un(f)−σ (ef − B−σ )

]

x1σ = E2σ − ef − Un
(f)
−σ

E2σ − E1σ
= 1 − x2σ .

(25)
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The decisive element for the ongoing procedure is the ‘higher’ correlation function B−σ :

n
(f)
−σ (1 − n

(f)
−σ )(B−σ − ef) = V 〈f †

i−σ si−σ (2n
(f)
iσ − 1)〉. (26)

It has been demonstrated in previous works [13–15,24] that its analogue has a decisive influence
on the stability of the spontaneous magnetism in the Hubbard model. We believe that it plays a
similarly important role for ferromagnetism in the PAM [12,28]. In spite of the fact that it is a
‘higher’ correlation function, it can be rigorously expressed using single-electron terms [13]:

n
(f)
−σ (1 − n

(f)
−σ )(B−σ − ef) = − 1

πh̄
�

∫ +∞

−∞
dE f−(E)

(
2

U
�σ (E)− 1

)

× [(E − (ef − µ)−�σ(E))G
(f)
iiσ (E)− h̄]. (27)

With the fictitious alloy (25), we enter the CPA equation (14). The theory is now complete.
The equations (14), (15), (8), (27), and (13), together with (25), build a closed system of
equations which can be solved self-consistently for the self-energy�σ(E). Note that the only
k-dependence that comes into play in (8) arises via the formal solution of the equation of
motion. The dependence on k is therefore strictly an ε(k) dependence, so all k-summations
can be replaced by simpler energy integration over the ‘free’ Bloch density of states:

ρ0(E) = (1/N)
∑

k

δ(E − ε(k))

which has to be considered as a model parameter:

G
(f)
iiσ (E) = h̄

∫ +∞

−∞
dx ρ0(x)

/(
E − (ef − µ)− V 2

E − (x − µ)
−�σ(E)

)
. (28)

Let us comment on the modified alloy analogy (25) and its differences from the con-
ventional AA (16): within the AA, the σ–f electron is propagating through a fictitious alloy
where one component is represented by lattice sites with no −σ -electron present, and the
other component is represented by lattice sites which are occupied by one −σ -electron.
This approach therefore completely neglects the hybridization between the f levels and the
conduction band. For calculating the self-energy, the −σ–f electrons are frozen; any exchange
with the conduction band is eliminated. This excludes the possibility of magnetic order in the
system. How can this drawback be circumvented? It is clear that the PAM will always be
considered to belong to the strong-coupling regime (large U ). Two well-separated excitation
peaks will therefore be expected in the f-electron quasiparticle density of states. The above-
described ansatz for fitting the positions and weights of these to an exact 1/E expansion of the
Green function seems the most plausible one, since these charge excitation peaks are themselves
high-energy features. It is noteworthy that all differences induced thereby between the MAA
and the AA are due to the hybridization between f and s levels. It can be seen in equation
(26) that in the limit of vanishing hybridization (V = 0), B−σ = ef holds and equations (25)
reduce to the conventional alloy analogy (16). However, for finite hybridization, B−σ and n(f)−σ
are to be determined self-consistently by (27) and (13), respectively, possibly providing the
alloy energies and concentrations with an explicit spin dependence. In each step of the CPA
iteration, B−σ and n(f)−σ may change, and so can the underlying fictitious alloy. Equation (26)
makes it clear that the inclusion of B−σ accounts to a certain degree for the hybridization of
−σ–f electrons with the conduction band and therefore also for their effective itineracy which
is completely neglected in the conventional alloy analogy (16).

Before further discussing the MAA, let us remind the reader of the already mentioned
spectral density approximation (SDA). In a previous work, this theory was derived via mapping
of the PAM onto an effective-medium Hubbard model [12]. Within this effective Hubbard
model, the SDA is justified in the strong-coupling limit where the positions and spectral weights
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obtained for the lower and upper Hubbard band coincide with exact results up to the order
1/U [21]. At this point it is worth noting that exactly the same results as in reference [12] can
also be obtained by adapting the concept of the SDA directly to the PAM, which is possible and
straightforward from the above-presented results. Motivated by the solution for the ‘atomic’
limit (V = 0), we make the following ansatz for the self-energy:

�σ(E) = α1σ
E − α2σ

E − α3σ
. (29)

The coefficients of this ansatz can now be fitted in such a way that the high-energy expansion
of the self-energy, equation (22), with the coefficients (23), is obeyed. One readily arrives at

�(SDA)
σ (E) = Un

(f)
−σ (E − B−σ )

E − B−σ − U(1 − n
(f)
−σ )

(30)

which, together with equations (28), (27), and (13), solves the problem. It is straightforward
to show that this is identical to the approximation proposed in reference [12]. Therefore, the
discussion of the advantages and disadvantages of the method found therein remains valid.
The main disadvantage was clearly the neglect of quasiparticle damping in the ansatz (29).

Now turning back to the MAA, its benefits are immediately clear. While reproducing
the high-energy expansion up to the same order as the SDA, it additionally incorporates
quasiparticle damping via the CPA formalism. And contrary to the conventional alloy analogy,
the freedom of defining the ‘alloyed components’ is used to ensure the correct high-energy
expansion (22).

We conclude that the essentials of the qualitatively convincing SDA used in our previous
paper [12] are incorporated in the MAA and completed by a proper quasiparticle damping.
So the MAA represents a systematic improvement and extension of the SDA. Comparison of
results for the MAA and SDA will allow us to inspect very directly the influence of quasiparticle
damping on magnetic stability in the PAM.

4. Results and discussion

The theory presented for the periodic Anderson model has been evaluated for a system
characterized by the following parameters: the density of states for the free conduction band is
chosen to be semi-elliptic with a width ofW = 1 eV centred atE = 0. The f level is determined
by its distance (ef ) from the conduction band centre and the intra-atomic Coulomb interaction
U . The latter is 4 eV throughout the paper. This means that we consider the PAM in the strong-
coupling regime. Furthermore, we are mainly interested in the intermediate-valence regime,
i.e. ef is presumed to be located within the Bloch-band region (−0.5 eV < ef < +0.5 eV). It
turns out that the physics of the PAM strongly depends on the total particle density

n(tot) =
∑
σ

(n(f)σ + n(s)σ ) 0 � n(tot) � 4. (31)

We therefore present results for different n(tot), but such that the upper charge excitation at
ef + U (the ‘upper Hubbard band’) remains in all cases unoccupied (n(tot) < 3). Another
decisive variable is of course the temperature T given in K. The evaluation of our theory has
been done for a translationally symmetric lattice; antiferromagnetic ordering is not considered.
We concentrate instead on the possibility of and the conditions for spontaneous ferromagnetism.

The magnetic phase diagram in terms of n(tot) and ef for a small hybridization V = 0.1 eV
is plotted in figure 1. For a given ef within the Bloch-band region, ferromagnetism becomes
possible for particle densities in between a lower and an upper critical value. These critical
values shift to higher numbers with increasing f-level position. Ferromagnetism is of course
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basically induced by the correlated f electrons. Except as regards the hybridization with the
conduction electrons, they are described by the zero-bandwidth Hubbard model. The latter
special case, however, forbids ferromagnetism. So a finite hybridization V is needed. On the
other hand, one knows that ferromagnetic spin order in the Hubbard model is bound by further
conditions: the band occupation and the Coulomb correlationU/W must exceed critical values
which are different for different lattice structures [14, 15, 29, 30]. Furthermore, the free band
should have an asymmetric density of states [31]. Neither the SDA nor the MAA allows
ferromagnetism in the ‘pure’ Hubbard model for highly symmetric free densities of states
such as the semi-elliptic one, irrespective of the correlation strength U/W . In the PAM with
finite hybridization V , however, all of these conditions can be met: the hybridization creates
a finite width of the f dispersion, and the resulting effective f band turns out to be strongly
asymmetric, thereby allowing for a ferromagnetic ground state. For a given ef , the lower
critical density in the phase diagram (figure 1) is the analogue of the critical particle density in
the Hubbard model [15]. At the upper boundary, the lower f charge excitation is more or less
filled, corresponding to a half-filled band in the strongly coupled Hubbard model for which
antiferromagnetism is to be expected [15, 32].

0 0.5 1 1.5 2 2.5 3

Band filling n
(tot)

−0.4

−0.2

0

0.2

0.4

f−
le

ve
l p

os
iti

on
 e

f

Figure 1. The magnetic phase diagram in the n(tot)–ef plane for V = 0.1, U = 4, and T = 0.
f and s magnetizations are parallel to the left of the dotted line and antiparallel to the right.

The upper boundary in the phase diagram for a given ef always corresponds to a first-order
transition, the lower one to a second-order transition. This can be seen in figure 2 where the
spontaneous T = 0 magnetization is plotted as function of the total particle density n(tot). The
position of the f level leads to strikingly different behaviour of the magnetization.

With ef in the lower half of the conduction band (left column in figure 2), the f magnet-
ization increases from the lower boundary very rapidly to saturation to show the above-
mentioned discontinuous transition into the paramagnetic phase at the upper boundary. It
is interesting that the induced s polarization is at first positive (ferromagnetic s–f coupling)
for weak electron densities, and changes its sign (antiferromagnetic s–f coupling) at about
n(tot) = 1.2. According to the Schrieffer–Wolff transformation [9], at first glance an anti-
ferromagnetic coupling between s and f electrons would be expected. However, the trans-
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Figure 2. f (solid line) and s (dotted line) magnetizations as functions of n(tot) for various values
of ef . The s magnetization is multiplied by a factor of 5 for better visibility. The other parameters
are as for figure 1.

formation is bound by the Kondo limit (n(f) = 1) and is not necessarily conclusive for the
intermediate-valence region which is investigated here. The quasiparticle density of states
(QDOS), plotted in figure 3 for ef = −0.3 eV and various electron densities, gives some
indication of how to understand the sign change of the s-electron polarization. It is instructive
to decompose the QDOS into s and f parts, although this decomposition is artificial because
of the finite hybridization. The latter takes care of the fact that s and f partial QDOS occupy
exactly the same energy regions but of course with different weights. In the ↑ parts of both
spectra the hybridization gap around ef = −0.3 eV is clearly visible. For practically all
densities n(tot) exhibited in figure 3, the f system is saturated, i.e. there are no down-spin f
electrons. It is known from the Hubbard model [13,15], and will be shown in figure 13 for the
PAM, that then the damping of up-spin quasiparticles is in such a case negligible compared
to that of down-spin quasiparticles. Fine structures like the hybridization gap are to be seen
in the up spectrum but not in the down spectrum. The comparison with the SDA results in
reference [12] confirms the interpretation that quasiparticle damping closes the hybridization
gap in the ↓ spectrum. The SDA neglects such damping effects; consequently the SDA ↓
spectrum, too, exhibits a gap. There is a slight exchange shift in the s part due to hybridization.
As long as the chemical potential µ is below the hybridization gap, the system contains more
up-spin than down-spin s electrons; the s–f coupling is ferromagnetic. When µ shifts above
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Figure 3. f- and s-quasiparticle densities of states for various values of n(tot) and ef = −0.3. Full
lines are for spin up and dotted lines for spin down. The other parameters are as for figure 1. Thin
vertical lines show the positions of the chemical potential.

the gap (in figure 3 in between n(tot) = 1.10 and n(tot) = 1.25), which exists only in the up
spectrum, then the increase in n(s)↓ distinctly exceeds that of n(s)↑ , and the s–f coupling becomes
antiferromagnetic. That explains the magnetization behaviour in figure 2 (left column) as a
density-of-states effect. Note, however, that the absolute value of the induced s polarization is
always rather small.

A qualitatively different situation is observed for the magnetization when ef is near to the
centre of the s band (middle column in figure 2). A re-entrant course appears, obviously not
connected with the sign change of the s polarization. It manifests itself in the phase diagram
of figure 1 by causing ‘oscillating’ phase boundaries. Again, a look at the respective QDOS is
quite instructive. Figure 4 shows the example with ef = −0.1 eV. For such an f-level position,
the hybridization gap splits the f-dominated part of the spectrum rather symmetrically into two
almost equally weighted peaks. That holds in particular for the ↑ spectrum of the ferromagnetic
phase (n(tot) = 1.35, 1.45, 1.75, 1.85 in figure 4). The chemical potentialµ is located in one of
the peaks, a situation which according to the simple Stoner criterion favours the appearance of
ferromagnetism. As already discussed for the case of figure 3 (left column in figure 2), in the
ordered phase ↑ quasiparticles are rather long-living while the ↓ particles are strongly damped.
Again we conclude that this is why the hybridization gap exists only in the ↑ spectrum. The
spontaneous ferromagnetism disappears when µ enters the hybridization gap, in accordance
with the Stoner criterion. The quasiparticles are more strongly damped in the paramagnetic
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Figure 4. As figure 3, but for ef = −0.1.

phase than the ↑ particles in the ordered phase, so the hybridization gap is more or less covered
by the ‘smeared-out’ quasiparticle peaks.

When the bare f level ef has been shifted into the upper half of the conduction band, the
polarization type changes once more. The coupling between s and f electrons is always
antiferromagnetic (right column in figure 2). The QDOS in figure 5, for the case with
ef = 0.3 eV, reveals that ferromagnetic order sets in only when µ is above the hybridization
gap. The consequence is that there are more s electrons with spin ↓ than with spin ↑.

The phase diagram in figure 1 is calculated for a fixed hybridization V = 0.1 eV. It is
clear that V has a decisive influence on the extent of the ferromagnetic phase in the ef–n(tot)

plane. Figure 6 demonstrates that the higher the hybridizationV , the smaller the ferromagnetic
region. On the other hand, the induced polarization of the s electrons increases with growing
hybridization. Antiparallel coupling appears only for weak V . Strong electron fluctuations
between the s band and f level generally diminish the magnetic stability but enhance the
polarization of the s band. However, the same hybridization is exclusively responsible for the
ferromagnetic order. For V = 0, ferromagnetism is not permitted.

It is interesting to find out to what extent quasiparticle damping may influence the poss-
ibility and the stability of ferromagnetic order. This can best be done by a comparison of
the results found from the SDA [12] and the MAA. The two methods are based on the same
physical ideas; the MAA can be classified as ‘the SDA plus quasiparticle damping’. Figure 7
shows the magnetic phase diagrams, derived within the SDA and the MAA for the same set
of model parameters. The ef–n(tot) area of the ferromagnetic phase is distinctly restricted in
the MAA because of the quasiparticle damping, in contrast to the SDA result, which is free of
damping effects. For both methods we find that for lower particle densities a ferromagnetic and
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Figure 5. As figure 3, but for ef = 0.3.
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for higher densities an antiferromagnetic coupling of the s-electron spins to the local f moments
takes place.

Up to now we have discussed mainly the ef - and the n(tot)-dependences of the physical
properties of the periodic Anderson model. Let us now examine the influence of V in detail.
Some results are plotted in figures 8, 9, and 10 for ef = −0.3 eV and several particle densities
n(tot). The behaviour is not at all unique. For n(tot) = 1.4 a rather weak hybridization V is
sufficient to destroy the ferromagnetism (figure 8). The Curie temperature Tc runs through a
maximum (figure 9), pointing to the fact that V provokes two competing effects. It broadens
the f level, thus creating the precondition for a magnetic order (no ferromagnetism in the
zero-bandwidth Hubbard model [30]!) On the other hand, increasing s–f fluctuations must
damage the ferromagnetic order because the empty f level does not carry a magnetic moment.
It is remarkable that Tc goes smoothly to zero (figure 9) although the T = 0 magnetization
undergoes a first-order transition (figure 8).

A completely different V -dependence shows up for the band occupations n(tot) = 1.0 and
1.2. In these cases large hybridization strength does not destroy the ferromagnetism, but rather
enhances Tc. On closely examining figure 8, one recognizes a ‘kink’ or a minimum in the
respective magnetization curves, for n(tot) = 1.0 at V ≈ 0.45 and for n(tot) = 1.2 at V ≈ 0.09.
By comparing with the densities of states (figure 10), we note that this value approximately
coincides with the V -value where µ enters the hybridization gap in the ↑ QDOS. That is, the
system becomes a semi-metal where only the ↓ electrons contribute to the electrical current.
One might speculate that this has something to do with the increasing Tc. However, we cannot
rule out the possibility that this is an effect of our approximation rather than an inherent
property of the PAM.

Let us finally discuss the temperature dependence of the magnetic properties, e.g. the
spontaneous magnetization (figure 11). First-order as well as second-order transitions appear.
Whether first-order transitions are artefacts of our approximate procedure or intrinsic properties
of the PAM is not clear. A similar situation is found when applying the MAA to the Hubbard
model [24]. In the case of a second-order transition, the f magnetization behaves like a
Brillouin function, while the corresponding induced s polarization very often shows remarkable
deviations. The examples plotted in figure 11 demonstrate again that the s–f coupling may be
ferromagnetic or antiferromagnetic depending on the band filling.

A key quantity of ferromagnetism is the Curie temperatureTc, which is of course decisively
influenced by the band filling (figure 12). The n(tot)-dependence is very much more regular
than the V -dependence exhibited in figure 9. The re-entrant behaviour for ef = −0.1 eV
corresponds to that of the T = 0 moment in figure 2 (middle column). The calculated
Tc-values are of a realistic order of magnitude. The transition into the paramagnetic phase
(Tc = 0) seems to be always continuous even if the breakdown of the T = 0 moment
is discontinuous (figure 2). The temperature dependence of the magnetization is due to a
corresponding behaviour of the QDOS (figure 13). There is a distinct spin asymmetry in the
lower f-like peak (‘lower Hubbard band’) which causes the spontaneous magnetic moment.
The up-spin part is characterized by a hybridization gap, which is not visible in the down-
spin spectrum (cf. figures 3, 4, and 5). As already mentioned, this is due to quasiparticle
damping, which for low temperatures is very much stronger for ↓ than for ↑ quasiparticles
(cf. figure 13). With increasing temperature the damping of the ↑ particles gets larger and
that of the ↓ particles gets smaller. For increasing temperatures, a dip develops in the spin-
↓ QDOS, which eventually merges with the spin-↑ hybridization gap at T = Tc. The spin
asymmetry is then removed. The induced spin polarization of the conduction band is always
very weak, so the assumption that the collective order is based on an RKKY-like coupling
via the polarized conduction electrons appears unlikely. It is rather easier to believe that the
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observed ferromagnetism is due to strong electron correlations in the narrow ‘f band’, as is
the case in the single-band Hubbard model [25, 33]. The coupling to the s band via V takes
care of the finite width of the original f level, being in this sense the basic precondition for
ferromagnetic order in the periodic Anderson model.

Figure 12. Curie temperature Tc as a function of band filling n(tot) for different values of ef . The
hybridization strength is V = 0.1 on the left and V = 0.2 on the right.
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Figure 13. f- and s-quasiparticle densities of states at various temperatures. ef = −0.3, V = 0.1,
and n(tot) = 1.1. Full lines are for spin up and dotted lines for spin down. Thin vertical lines
show the positions of the chemical potential. Additionally, the imaginary part of the self-energy is
plotted as thin lines in the right-hand column. For better visibility, it is multiplied by −100.

5. Conclusions

A ‘modified alloy analogy’ (MAA) [24, 25], previously introduced as an approach to the
single-band Hubbard model [30], has been applied to the periodic Anderson model (PAM).
A high-energy expansion of relevant Green functions and a corresponding expansion of the
determining equation for the CPA self-energy have been used to find the optimum alloy analogy
for the PAM. This alloy analogy was then used to solve the PAM many-body problem within
the CPA. By construction, the MAA represents a strong-coupling approach, and is hence most
probably suitable for describing spontaneous ferromagnetism in the PAM. It can be considered
as an extension and improvement of the ‘spectral density approach’ (SDA) [13–15,24]—mainly
by inclusion of quasiparticle damping. It cannot, however, reproduce the low-energy features
of the PAM (Kondo resonance) [1, 34], being certainly not so decisive as regards magnetic
stability. It incorporates, however, important higher correlation functions (‘spin-dependent
band shift’) which guarantee the correct strong-coupling behaviour [21].

The present study focuses on the possibility and the stability of ferromagnetism in the
PAM: magnetic phase diagrams are constructed in terms of relevant model parameters such as
the hybridization strength V , f-level position ef , and total particle density n(tot). For this work
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we are mainly interested in the intermediate-valence regime, i.e. where ef is chosen within the
energy region of the ‘free’ Bloch band. The same holds for the chemical potentialµ. As usual,
the ‘f level’ and conduction band are assumed to be non-degenerate. The intra-atomic Coulomb
interaction U of the f electrons leads to a splitting of ef into two sublevels at ef and ef +U . U
is chosen such that the upper charge excitation remains unoccupied, i.e. 0 < n(tot) < 3. The
influence of V is multifold. First of all, it leads to a finite width of the lower f-quasiparticle
peak that turns out to be a basic prerequisite for ferromagnetism in the intermediate-valence
PAM. On the other hand, too strong s–f fluctuations due to V destabilize the ferromagnetic
order. Additionally, V induces a hybridization gap in the energy spectrum, which, however,
gets closed by too strong quasiparticle damping. If the f magnetization is almost saturated,
then the ↑ spectrum shows a hybridization gap, while the ↓ spectrum does not. This has some
influence on the induced s polarization which can be parallel or antiparallel to the f moment.
The Curie temperatures derived are of reasonable orders of magnitude. All of the magnetic
properties of the PAM can be illustratively traced back and reasoned out by inspection of the
respective quasiparticle densities of states.
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